Fourier Series and Applications

粦 Functions expansion is done to understand them better in powers of x etc．
粦 Many important problems involving partial differential equations can be solved，provided a given function can be expressed as an infinite sum of sines and cosines．
潾 In this section，we will see how functions can be expanded having discontinuities also．Applications are in rotating machines，Sound waves，heart Beats．
奖 These trigonometric series are called Fourier series，and are somewhat analogous to Taylor series，in that both types of series provide a means of expressing complicated functions in terms of certain familiar elementary functions．

Broad Use of Fourier Series

粦 Fourier series is used as a means of solving certain problems in partial differential equations．
类 However，Fourier series have much wider application in science and engineering，and in general are valuable tools in the investigations of periodic phenomena．
类 For example，a basic problem in spectral analysis is to resolve an incoming signal into its harmonic components，which amounts to constructing its Fourier series representation．
然 In some frequency ranges the separate terms correspond to different colors or to different audible tones．
桨 The magnitude of the coefficient determines the amplitude of each component．

Important formulas

㶹 A tratio of $\left(\mathrm{n}^{*} 90 \pm \theta\right)= \pm$ same ratio of θ when n is even，（The sign + or - is to be decided from the quadrant in which the angle（ $\mathrm{n}^{*} 90 \pm \theta$ ）lies）．Ex：sin $570=\sin (6 \times 90+30)=-\sin 30=-1 / 2$ ．
＊A ratio of（ $\mathrm{n} * 90 \pm \theta$ ）$= \pm$ co ratio of ratio of θ when n is odd．（The sign + or - is to be decided from the quadrant in which the angle（ $\mathrm{n} * 90 \pm \theta$ ）lies）．
欮 $\operatorname{Tan} 315=\tan (3 \times 90+45)=-\cot 45=-1$

$$
\int u v d x=u v_{1}-u v_{2}+u^{\prime \prime} v_{3}-u^{\prime \prime \prime} v_{4}+u^{\prime \prime "} v_{5}-\ldots \ldots .
$$

絭 Where dash denotes differentiation and suffixes integration wr to x ．

Important Formulas

$$
\begin{aligned}
& 2 \operatorname{Sin} x \operatorname{Cos} y=\operatorname{Sin}(x+y)+\operatorname{Sin}(x-y), \\
& 2 \operatorname{Cos} x \operatorname{Sin} y=\operatorname{Sin}(x+y)-\operatorname{Sin}(x-y) \\
& 2 \operatorname{Cos} x \operatorname{Cos} y=\operatorname{Cos}(x+y)+\operatorname{Cos}(x-y), \\
& 2 \operatorname{Sin} x \operatorname{Sin} y=\operatorname{Cos}(x-y)-\operatorname{Cos}(x+y), \\
& \operatorname{Sin} \frac{\pi}{2}=\sin \frac{5 \pi}{2}=\ldots=1, \sin \frac{3 \pi}{2}=\sin \frac{7 \pi}{2}=\ldots=-1 \\
& \cos 2 \pi=\cos 4 \pi=\ldots=1, \sin n \pi=0, \cos n \pi=(-1)^{n}, \\
& \cos \pi=\cos 3 \pi=\cos 5 \pi=-1 \\
& \sin \left(n+\frac{1}{2}\right) \pi=(-1)^{n}, \cos \left(n+\frac{1}{2}\right) \pi=0 \\
& n=\operatorname{int}
\end{aligned}
$$

Important Formulas

$$
\begin{aligned}
& \int_{\alpha}^{\alpha+2 \pi} \cos n x d x=\left|\frac{\sin n x}{n}\right|_{\alpha}^{\alpha+2 \pi}=0, \\
& \int_{\alpha}^{\alpha+2 \pi} \sin n x d x=-\left|\frac{\cos n x}{n}\right|_{\alpha}^{\alpha+2 \pi}=0, \\
& \int_{\alpha}^{\alpha+2 \pi} \cos m x \cos n x d x=\frac{1}{2} \int_{\alpha}^{\alpha+2 \pi}(\cos (m+n) x+\cos (m-n) x) d x \\
& =\frac{1}{2}\left|\frac{\sin (m+n)}{(m+n)}+\frac{\sin (m-n)}{m-n}\right|_{\alpha}^{\alpha+2 \pi}=0,
\end{aligned}
$$

Important Formulas

$$
\begin{aligned}
& \int_{\alpha}^{\alpha+2 \pi} \cos ^{2} n x d x=\left|\frac{x}{2}+\frac{\sin 2 n x}{4 n}\right|_{\alpha}^{\alpha+2 \pi}=\pi, n \neq 0 \\
& \int_{\alpha}^{\alpha+2 \pi} \sin ^{2} n x d x=\left|\frac{x}{2}-\frac{\sin 2 n x}{4 n}\right|_{\alpha}^{\alpha+2 \pi}=\pi, n \neq 0 \\
& \int_{\alpha}^{\alpha+2 \pi} \sin m x \cos n x d x=\frac{1}{2} \int_{\alpha}^{\alpha+2 \pi}(\sin (m+n) x+\sin (m-n) x) d x \\
& =-\frac{1}{2}\left|\frac{\cos (m+n)}{(m+n)}+\frac{\cos (m-n)}{(m-n)}\right|_{\alpha}^{\alpha+2 \pi}=0, m \neq n
\end{aligned}
$$

Fourier Series Representation of Functions

* We begin with a series of the form

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \frac{m \pi x}{L}+b_{m} \sin \frac{m \pi x}{L}\right)
$$

** On the set of points where this series converges, it defines a function f whose value at each point x is the sum of the series for that value of x.
粦 In this case the series is said to be the Fourier series of f.
奖 Our immediate goals are to determine what functions can be represented as a sum of Fourier series, and to find some means of computing the coefficients in the series corresponding to a given function.

Periodic Functions

娄 We first develop properties of $\sin (m \pi x / L)$ and $\cos (m \pi x / L)$ ， where m is a positive integer．
楼 The first property is their periodic character．
粶 A function is periodic with period $T>0$ if the domain of f contains $x+T$ whenever it contains x ，and if

$$
f(x+T)=f(x),
$$

for all x ．See the graph as below．

＊For a periodic function of period $T, f(x+T)=f(x)$ for all x ．
浆 $\operatorname{Sin} n x$ and $\operatorname{Cos} n x$ are periodic with period $2 \pi / \mathrm{n}$ ．Also $2 T$ is also a period， and so is any multiple of T ．
娄 The smallest value of T for which f is periodic is called the fundamental period of f ．
谏 If f and g are two periodic functions with common period T ，then $f g$ and $c_{1} f+c_{2} g$ are also periodic with period T.
断 In particular， $\sin (m \pi x / L)$ and $\cos (m \pi x / L)$ are periodic with period $T=$ $2 \mathrm{~L} / \mathrm{m}$ ．

$$
\begin{aligned}
& f(x)=2 \sin x+\frac{1}{2} \cos 3 x+\frac{1}{5} \sin 5 x \\
& =2.2 \pi+\frac{1}{2} \frac{2 \pi}{3}+\frac{1}{5} \frac{2 \pi}{5}
\end{aligned}
$$

Discontinuities

Orthogonality

** The standard inner product (u, v) of two real-valued functions u and v on the interval $\alpha \leq x \leq \beta$ is defined by

$$
(u, v)=\int_{\alpha}^{\beta} u(x) v(x) d x
$$

类 The functions u and v are orthogonal on $\alpha \leq x \leq \beta$ if their inner product (u, v) is zero:

$$
(u, v)=\int_{\alpha}^{\beta} u(x) v(x) d x=0
$$

类 A set of functions is mutually orthogonal if each distinct pair of functions in the set is orthogonal.

Orthogonality of Sine and Cosine

类 The functions $\sin (m \pi x / L)$ and $\cos (m \pi x / L), m=1,2, \ldots$, form a mutually orthogonal set of functions on $-L \leq x \leq L$, with

$$
\begin{aligned}
& \int_{-\mathrm{L}}^{\mathrm{L}} \cos (m \pi x / L) \cos (n \pi x / L) d x=L \\
& \delta_{m, n} \\
& \int_{\mathrm{L}}^{\mathrm{L}} \cos (m \pi x / L) \sin (n \pi x / L) d x=0 \\
& \int_{-\mathrm{L}}^{\mathrm{L}} \cos (m \pi x / L) \sin (n \pi x / L) d x=L \delta_{m, n}\left(\operatorname{lin}^{2}\right) \\
& \text { where } \delta_{m, n}=1 \text { if } \mathrm{m}=\mathrm{n} \text { and } \delta_{m, n}=0 \text { if } m \neq n
\end{aligned}
$$

类 These results can be obtained by direct integration;

Coefficient Formulas

类 Thus from the previous slide we have

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, n=1,2, \ldots
$$

＊To find the coefficient a_{0} ，we have

$$
\int_{-\pi}^{\pi} f(x) d x=\frac{a_{0}}{2} \int_{-\pi}^{\pi} d x+\sum_{n=1}^{\infty} a_{n} \int_{-\pi}^{\pi} \cos n x d x+\sum_{n=1}^{\infty} b_{n} \int_{-\pi}^{\pi} \sin n x d x=\pi a_{0}
$$

类 Thus the coefficients a_{n} are given by

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, n=0,1,2, \ldots
$$

＊Similarly，the coefficients b_{n} are given by

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x, n=1,2, \ldots
$$

The Euler－Fourier Formula $(-\pi,+\pi)$

皆 Thus the coefficients are given by the equations

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, n=0,1,2, \ldots, \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x, n=1,2, \ldots,
\end{aligned}
$$

which known as the Euler－Fourier formulas．
＊＊Note that these formulas depend only on the values of $f(x)$ in the interval $-\pi \leq x \leq \pi$ ．Since each term of the Fourier series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right)
$$

is periodic with period 2pi，the series converges for all x when it converges in $-\pi \leq x \leq \pi$ ，and f is determined for all x by its values in－$\pi \leq x \leq \pi$ ．

$$
f(x)=\frac{1}{2}(\pi-x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

粦 Find the F S. to represent $x-x^{2}$ from-pi to pi.

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}(\pi-x) d x
$$

$$
\frac{1}{2 \pi}\left[\pi x-\frac{x^{2}}{2}\right]_{-\pi}^{\pi}=\pi
$$

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}(\pi-x) \cos n x d x \\
& a_{n}=\frac{1}{2 \pi}\left[(\pi-x) \frac{\sin n x}{n}-(-1)\left(\frac{-\cos n x}{n^{2}}\right)\right]_{-\pi}^{\pi} \\
& =\frac{1}{2 \pi}[0]=0 \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}(\pi-x) \sin n x d x \\
& =\frac{1}{2 \pi}\left[(\pi-x) \frac{-\cos n x}{n}-(-1)\left(\frac{-\sin n x}{n^{2}}\right)\right]_{-\pi}^{\pi} \\
& =\frac{(-1)^{n}}{n}
\end{aligned}
$$

Using coeff. Just obtained

类 We get
$f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x$

$$
f(x)=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin n x
$$

Obtain the Fourier expansion of $f(x)=\mathrm{e}^{-\mathrm{ax}}$ in the interval $(-\pi$,
π).
EX

$a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} e^{-a x} d x=\frac{1}{\pi}\left[\frac{e^{-a x}}{-a}\right]_{-\pi}^{\pi}$
$=\frac{e^{a \pi}-e^{-a \pi}}{a \pi}=\frac{2 \sinh a \pi}{a \pi}$
$a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} e^{-a x} \cos n x d x$
$a_{n}=\frac{1}{\pi}\left[\frac{e^{-a x}}{a^{2}+n^{2}}\{-a \cos n x+n \sin n x\}\right]_{-\pi}^{\pi}$
$=\frac{2 a}{\pi}\left[\frac{(-1)^{n} \sinh a \pi}{a^{2}+n_{\text {modified by }}^{2}}\right]$ Peeyush Tewari

$$
\begin{aligned}
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} e^{-a x} \sin n x d x \\
& b_{n}=\frac{1}{\pi}\left[\frac{e^{-a x}}{a^{2}+n^{2}}\{-a \sin n x-n \cos n x\}\right]_{-\pi}^{\pi} \\
& =\frac{2 n}{\pi}\left[\frac{(-1)^{n} \sinh \quad a \pi}{a^{2}+n^{2}}\right]
\end{aligned}
$$

$f(x)=\frac{\sinh a \pi}{a \pi}+\frac{2 a \sinh a \pi}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}} \cos n x+\frac{2}{\pi} \sinh a \pi \sum_{n=1}^{\infty} \frac{n(-1)^{n}}{a^{2}+n^{2}} \sin n x$
$0)=1=\frac{\sinh \pi}{\pi}+\frac{2 \sinh \pi}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+1}$

Example 1 function

** $f(x)=x^{2},-\pi<x<\pi, f$ is even so all $b_{n}=0$,

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} x^{2} d x=\frac{2}{3} \pi^{2}, \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x, \\
& a_{n}=\frac{2}{\pi}\left[x^{2} \frac{\sin n x}{n}-\frac{2 x}{n}\left(\frac{-\cos n x}{n}\right)+\frac{2}{n^{2}}\left(\frac{-\sin n x}{n}\right)\right]_{0}^{\pi} \\
& a_{n}=0+\frac{4}{n^{2}}(-1)^{n}
\end{aligned}
$$

Example 1 continues

类 Hence the Fourier series is given by

$$
\begin{aligned}
& f(x)=x^{2}=\frac{1}{2} \frac{2 \pi^{2}}{3}-4\left[\frac{\cos x}{1^{2}}-\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}}-\frac{\cos 4 x}{4^{2}} \ldots\right] \\
& x=0, \\
& \frac{\pi^{2}}{12}=\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}} \ldots\right]
\end{aligned}
$$

	etsdefine $S_{N}(x)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{n=N} \frac{(-1)^{n} \cos n x}{n^{2}}$ $S_{1}(x)=\frac{\pi^{2}}{3}-4 \cos x$ $S_{2}(x)=\frac{\pi^{2}}{3}-4 \cos x+\cos 2 x$ \ldots $S_{6}(x)=\frac{\pi^{2}}{3}-4 \cos x+\cos 2 x-\frac{4}{9} \cos 3 x+\frac{1}{4} \cos 4 x-\frac{4}{25} \cos 5 x+\frac{1}{9} \cos 5 x$ modified by Peeyush Tewari

㮏 The coefficients $a_{n}, n=1,2, \ldots$, can be found as follows.

$$
\begin{aligned}
\int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x & =\frac{a_{0}}{2} \int_{-L}^{L} \cos \frac{n \pi x}{L} d x+\sum_{n=1}^{\infty} a_{n} \int_{-L}^{L} \cos \frac{n \pi x}{L} \cos \frac{n \pi x}{L} d x \\
& +\sum_{n=1}^{\infty} b_{n} \int_{-L}^{L} \sin \frac{n \pi x}{L} \cos \frac{n \pi x}{L} d x
\end{aligned}
$$

* *y orthogonality,

$$
\int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x=a_{n} \int_{-L}^{L} \cos ^{2} \frac{n \pi x}{L} d x=L a_{n}
$$

Coefficient Formulas

类 Thus from the previous slide we have

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x, n=1,2, \ldots
$$

楼 To find the coefficient a_{0} ，we have

$$
\int_{-L}^{L} f(x) d x=\frac{a_{0}}{2} \int_{-L}^{L} d x+\sum_{n=1}^{\infty} a_{n} \int_{-L}^{L} \cos \frac{n \pi x}{L} d x+\sum_{n=1}^{\infty} b_{n} \int_{-L}^{L} \sin \frac{n \pi x}{L} d x=L a_{0}
$$

类 Thus the coefficients a_{n} are given by

$$
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x, a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x, n=0,1,2, \ldots
$$

楼 Similarly，the coefficients b_{n} are given by

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x, n=1,2, \ldots
$$

The Euler－Fourier Formulas

类 Thus the coefficients are given by the equations

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x, n=0,1,2, \ldots, \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x, n=1,2, \ldots,
\end{aligned}
$$

which known as the Euler－Fourier formulas．
＊＊Note that these formulas depend only on the values of $f(x)$ in the interval $-L \leq x \leq L$ ．Since each term of the Fourier series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right)
$$

is periodic with period $2 L$ ，the series converges for all x when it converges in $-L \leq x \leq L$ ，and f is determined for all x by its values in $-L \leq x \leq L$

Example 2：Triangular Wave（1 of 3）

粦 Consider the function below．

$$
f(x)=\left\{\begin{array}{rr}
-x, & -2 \leq x<0 \\
x, & 0 \leq x<2
\end{array}, \quad f(x+4)=f(x)\right.
$$

枈 This function represents a triangular wave，and is periodic with period $T=4$ ．See graph of f below．In this case，$L=2$ ．
类 Assuming that f has a Fourier series representation，find the coefficients a_{m} and b_{m} ．

Example 2：Coefficients（2 of 3）

为 First，we find a_{0} ：

$$
a_{0}=\frac{1}{2} \int_{-2}^{0}(-x) d x+\frac{1}{2} \int_{0}^{2} x d x=1+1=2
$$

獜 Then for $a_{m}, m=1,2, \ldots$ ，we have

$$
a_{m}=\frac{1}{2} \int_{-2}^{0}(-x) \cos \frac{m \pi x}{2} d x+\frac{1}{2} \int_{0}^{2} x \cos \frac{m \pi x}{2} d x=\left\{\begin{array}{cc}
-8 /(m \pi)^{2}, & m \text { odd } \\
0, & m \text { even }
\end{array}\right.
$$

where we have used integration by parts．
橉 Similarly，it can be shown that $b_{m}=0, m=1,2, \ldots$

Example 2: Fourier Expansion (3 of 3)

䊏 Thus $b_{m}=0, m=1,2, \ldots$, and

$$
a_{0}=2, a_{m}=\left\{\begin{array}{cc}
-8 /(m \pi)^{2}, & m \text { odd } \\
0, & m \text { even },
\end{array}\right.
$$

粦 Then

$$
\begin{aligned}
f(x) & =\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \frac{m \pi x}{L}+b_{m} \sin \frac{m \pi x}{L}\right) \\
& =1-\frac{8}{\pi^{2}}\left(\cos \frac{\pi x}{2}+\frac{1}{3^{2}} \cos \frac{3 \pi x}{2}+\frac{1}{5^{2}} \cos \frac{5 \pi x}{2}+\ldots\right) \\
& =1-\frac{8}{\pi^{2}} \sum_{m=1,3,5, \ldots}^{\infty} \frac{\cos (m \pi x / 2)}{m^{2}} \\
& =1-\frac{8}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) \pi x / 2}{(2 n-1)^{2}}
\end{aligned}
$$

Example 3：Coefficients（3 of 3）
然 First，we find a_{0} ：

$$
a_{0}=\frac{1}{3} \int_{-3}^{3} f(x) d x=\frac{1}{3} \int_{-1}^{1} d x=\frac{2}{3}
$$

奖 Using the Euler－Fourier formulas，we obtain

$$
\begin{aligned}
& a_{n}=\frac{1}{3} \int_{-1}^{1} \cos \frac{n \pi x}{3} d x=\left.\frac{1}{n \pi} \sin \frac{n \pi x}{3}\right|_{-1} ^{1}=\frac{2}{n \pi} \sin \frac{n \pi}{3}, n=1,2, \ldots, \\
& b_{n}=\frac{1}{3} \int_{-1}^{1} \sin \frac{n \pi x}{3} d x=-\left.\frac{1}{n \pi} \cos \frac{n \pi x}{3}\right|_{-1} ^{1}=0, n=1,2, \ldots,
\end{aligned}
$$

$$
a_{0}=\frac{2}{3}, a_{n}=\frac{2}{n \pi} \sin \frac{n \pi}{3}, n=1,2, \ldots
$$

粦 Then

$$
\begin{aligned}
f(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right) \\
& =\frac{1}{3}+\sum_{n=1}^{\infty} \frac{2}{n \pi} \sin \frac{n \pi}{3} \cos \frac{n \pi x}{3} \\
& =\frac{1}{3}-\frac{\sqrt{3}}{\pi}\left[\cos \left(\frac{\pi x}{3}\right)+\frac{1}{2} \cos \left(\frac{2 \pi x}{3}\right)-\frac{1}{4} \cos \left(\frac{4 \pi x}{3}\right)-\frac{1}{5} \cos \left(\frac{5 \pi x}{3}\right)+\ldots\right]
\end{aligned}
$$

Example 4：Triangular Wave

＊Consider again the function from Example 1

$$
f(x)=\left\{\begin{array}{rr}
-x, & -2 \leq x<0 \\
x, & 0 \leq x<2
\end{array}, \quad f(x+4)=f(x),\right.
$$

as graphed below，and its Fourier series representation

$$
f(x)=1-\frac{8}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) \pi x / 2}{(2 n-1)^{2}}
$$

类 We now examine speed of convergence by finding the number of terms needed so that the error is less than 0.01 for all x ．

Example ：Partial Sums

类 The m th partial sum in the Fourier series is

$$
s_{m}(x)=1-\frac{8}{\pi^{2}} \sum_{n=1}^{m} \frac{\cos (2 n-1) \pi x / 2}{(2 n-1)^{2}},
$$

and can be used to approximate the function f ．
断 The coefficients diminish as $(2 n-1)^{2}$ ，so the series converges fairly rapidly．This is seen below in the graph of s_{1}, s_{2} ，and f ．

Example ：Errors

粦 To investigate the convergence in more detail，we consider the error function $e_{m}(x)=f(x)-s_{m}(x)$ ．
䄅 Given below is a graph of $\left|e_{6}(x)\right|$ on $0 \leq x \leq 2$ ．
潾 Note that the error is greatest at $x=0$ and $x=2$ ，where the graph of $f(x)$ has corners．
紫 Similar graphs are obtained for other values of m ．

Example ：Uniform Bound

＊Since the maximum error occurs at $x=0$ or $x=2$ ，we obtain a uniform error bound for each m by evaluating $\left|e_{m}(x)\right|$ at one of these points．
粦 For example，$e_{6}(2)=0.03370$ ，and hence $\left|e_{6}(x)\right|<0.034$ on $0 \leq x \leq 2$ ，and consequently for all x ．

Example : Speed of Convergence

粦 The table below shows values of $\left|e_{m}(2)\right|$ for other values of m, and these data points are plotted below also.
** From this information, we can begin to estimate the number of terms that are needed to achieve a given level of accuracy.浆 To guarantee that $\left|e_{m}(2)\right| \leq 0.01$, we need to choose $m=21$.

\mathbf{m}	$\mathbf{e} \mathbf{m (2)}$
2	0.09937
4	0.05040
6	0.03370
10	0.02025
15	0.01350
20	0.01013
25	0.00810

