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Fourier Series and Applications
Functions expansion is done to understand them better in 
powers of x etcpowers of x etc.
Many important problems involving partial differential 
equations can be solved, provided a given function can be 
expressed as an infinite sum of sines and cosines. 
In this section, we will see how functions can be expanded 
having discontinuities also. Applications are in rotating 
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machines, Sound waves, heart Beats.
These trigonometric series are called Fourier series, and are 
somewhat analogous to Taylor series, in that both types of 
series provide a means of expressing complicated functions in 
terms of certain familiar elementary functions.

Broad Use of Fourier Series
Fourier series is used as a means of solving certain problems in 
partial differential equationspartial differential equations.   
However, Fourier series have much wider application in 
science and engineering, and in general are valuable tools in 
the investigations of periodic phenomena.  
For example, a basic problem in spectral analysis is to resolve 
an incoming signal into its harmonic components, which 
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amounts to constructing its Fourier series representation.
In some frequency ranges the separate terms correspond to 
different colors or to different audible tones. 
The magnitude of the coefficient determines the amplitude 
of each component.



9/17/2009

2

Important formulas
A t ratio of (n*90±θ) =±same ratio of θ
when n is even,(The sign +or – is to be decided from 
the quadrant in which the angle (n*90±θ) lies). Ex: sin q g ( ) )
570=sin(6x90+30)= - sin30=-1/2. 

A t ratio of (n*90±θ) =±co ratio of ratio of  
θ when n is odd. (The sign +or – is to be decided from 
the quadrant in which the angle (n*90±θ) lies). 
Tan315=tan (3x90+45)=-cot45=-1
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Where dash denotes differentiation and 
suffixes integration w r  to x.

∫ −+−+−= .......54321 vuvuvuvuuvuvdx
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Important Formulas
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Important Formulas
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Fourier Series Representation of Functions
We begin with a series of the form

⎞⎛

On the set of points where this series converges, it defines a 
function f whose value at each point x is the sum of the series 
for that value of x.  
In this case the series is said to be the Fourier series of f.  
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f
Our immediate goals are to determine what functions can be 
represented as a sum of Fourier series, and to find some means 
of computing the coefficients in the series corresponding to a 
given function. 
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Periodic Functions
We first develop properties of sin(mπx/L) and cos(mπx/L), 
where m is a positive integerwhere m is a positive integer.
The first property is their periodic character. 
A function is periodic with period T > 0 if the domain of f
contains x + T whenever it contains x, and if 

f (x + T) = f(x) ,
for all x.   See the graph as below. 

f
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g p

Periodicity of the Sine and Cosine Functions

For a periodic function of period T, f (x + T) = f(x) for all x.   
Sin nx and Cos nx are periodic with period 2π/n. Also 2T is also a period, 
and so is any multiple of T.
The smallest value of T for which f is periodic is called the fundamental 
period of f. 
If f and g are two periodic functions with common period T, then fg and   
c1 f + c2g are also periodic with period T. 
In particular, sin(mπx/L) and cos(mπx/L) are periodic with period T = 
2L/m
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Discontinuities
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Orthogonality
The standard inner product (u, v) of two real-valued functions 
u and v on the interval α ≤ x ≤ β is defined byu and v on the interval α ≤ x ≤ β is defined by 

The functions u and v are orthogonal on α ≤ x ≤ β if their 
inner product (u, v) is zero:

A set of functions is mutually orthogonal if each distinct pair 
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y g p
of functions in the set is orthogonal. 



9/17/2009

7

Orthogonality of Sine and Cosine
The functions sin(mπ x/L) and cos(mπ x/L), m = 1, 2, …, form 
a mutually orthogonal set of functions on L ≤ x ≤ L witha mutually orthogonal set of functions on -L ≤ x ≤ L, with

∫-
L

L cos (mπ x/L) cos (nπ x/L) dx = L 
δm,n
∫-

L
L cos (mπ x/L) sin (nπ x/L) dx = 0

∫-
L

L sin (mπ x/L) sin (nπ x/L) dx = L δm,n
where δm,n  = 1 if m=n and δm,n  = 0 if m≠n
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These results can be obtained by direct integration;   

Fourier Expansion (- π,+ π)
Suppose the series converges, and call its sum f(x):

Coefficients an, n = 1, 2, …, can be found as follows.
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By orthogonality, 
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Coefficient Formulas
Thus from the previous slide we have

1

To find the coefficient a0, we have

Thus the coefficients an are given by
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Similarly, the coefficients bn are given by

K,2,1,0,cos)(1
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The Euler-Fourier Formula(- π,+ π)
Thus the coefficients are given by the equations

1

which known as the Euler-Fourier formulas.
Note that these formulas depend only on the values of f(x) in 
the interval π ≤ x ≤ π Since each term of the Fourier series

,,2,1,sin)(1

,,2,1,0,cos)(1

K

K

==

==

∫

∫

−

−

ndxnxxfb

ndxnxxfa

n

n

π

π

π

π

π

π

modified by Peeyush Tewari 16

the interval - π ≤ x ≤ π.  Since each term of the Fourier series 

is periodic with period 2pi, the series converges for all x when 
it converges in - π ≤ x ≤ π, and f is determined for all x by its 
values in - π ≤ x ≤ π. 
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Find the F S. to represent x-x2  from-pi to pi.
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Using coeff. Just obtained
We get
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Obtain the Fourier expansion of f(x)=e-ax in the interval (-π, 
π).
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Example 1 function
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Example 1 continues

Hence the Fourier series is given byg y
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Now coeff. in Fourier Expansion if (-L,L)
Suppose the series converges, and call its sum f(x):

⎞⎛

The coefficients an, n = 1, 2, …, can be found as follows.
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By orthogonality, 
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Coefficient Formulas
Thus from the previous slide we have

1

To find the coefficient a0, we have

Thus the coefficients an are given by
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Similarly, the coefficients bn are given by
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The Euler-Fourier Formulas
Thus the coefficients are given by the equations
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which known as the Euler-Fourier formulas.
Note that these formulas depend only on the values of f(x) in 
the interval L ≤ x ≤ L Since each term of the Fourier series
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the interval -L ≤ x ≤ L.  Since each term of the Fourier series 

is periodic with period 2L, the series converges for all x when 
it converges in -L ≤ x ≤ L, and f is determined for all x by its 
values in -L ≤ x ≤ L. 
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Example 2: Triangular Wave    (1 of 3)

Consider the function below. 
02 xx⎧ <≤

This function represents a triangular wave, and is periodic with 
period T = 4. See graph of f below. In this case, L = 2. 
Assuming that f has a Fourier series representation, find the 
coefficients am and bm.  
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m m

Example 2: Coefficients (2 of 3)

First, we find a0:
11

Then for am, m = 1, 2, …, we have

where we have used integration by parts
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where we have used integration by parts.   
Similarly, it can be shown that bm= 0, m = 1, 2, …
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Example 2: Fourier Expansion (3 of 3)

Thus bm= 0, m = 1, 2, …, and
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Example 3: Function    (3 of 3)

Consider the function below. 
130⎧

This function is periodic with period T = 6. In this case, L = 3. 
Assuming that f has a Fourier series representation, find the 
coefficients an and bn.  
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Example 3: Coefficients (3 of 3)

First, we find a0:
211

Using the Euler-Fourier formulas, we obtain
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Example 3: Fourier Expansion (3 of 3)

Thus bn= 0, n = 1, 2, …, and
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Example 4: Triangular Wave    
Consider again the function from Example 1 

02⎧ <≤

as graphed below, and its Fourier series representation

We now examine speed of convergence by finding the number
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We now examine speed of convergence by finding the number 
of terms needed so that the error is less than 0.01 for all x. 

Example : Partial Sums    
The mth partial sum in the Fourier series is  

and can be used to approximate the function f.  
The coefficients diminish as (2n -1)2, so the series converges 
fairly rapidly. This is seen below in the graph of s1, s2, and  f. 
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Example : Errors    
To investigate the convergence in more detail, we consider the 
error function e (x) = f (x) s (x)error function em(x) = f (x) - sm(x).   
Given below is a graph of |e6(x)| on 0 ≤ x ≤ 2. 
Note that the error is greatest at  x = 0 and x = 2, where the 
graph of f(x) has corners. 
Similar graphs are obtained for other values of m. 
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Example : Uniform Bound    
Since the maximum error occurs at x = 0 or x = 2, we obtain a 
uniform error bound for each m by evaluating |e (x)| at one ofuniform error bound for each m by evaluating |em(x)| at one of 
these points.
For example, e6(2) = 0.03370, and hence |e6(x)| < 0.034 on 
0 ≤ x ≤ 2, and consequently for all x.  
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Example : Speed of Convergence    
The table below shows values of |em(2)| for other values of m, 
and these data points are plotted below alsoand these data points are plotted below also. 
From this information, we can begin to estimate the number 
of terms that are needed to achieve a given level of accuracy.
To guarantee that |em(2)| ≤ 0.01, we need to choose m = 21.  

m e_m(2)
2 0 09937
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2 0.09937
4 0.05040
6 0.03370

10 0.02025
15 0.01350
20 0.01013
25 0.00810

At Last
Thanks .
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