Fourier Series and Applications

- Functions expansion is done to understand them better in powers of x etc.
- * Many important problems involving partial differential equations can be solved, provided a given function can be expressed as an infinite sum of sines and cosines.
- In this section, we will see how functions can be expanded having discontinuities also. Applications are in rotating machines, Sound waves, heart Beats.
- These trigonometric series are called Fourier series, and are somewhat analogous to Taylor series, in that both types of series provide a means of <u>expressing complicated functions</u> in terms of certain familiar elementary functions.

modified by Peeyush Tewari

$$\frac{\text{Important Formulas}}{\int_{\alpha}^{\alpha+2\pi} \cos^{2} nx dx} = \left|\frac{x}{2} + \frac{\sin 2nx}{4n}\right|_{\alpha}^{\alpha+2\pi} = \pi, n \neq 0$$

$$\int_{\alpha}^{\alpha+2\pi} \sin^{2} nx dx = \left|\frac{x}{2} - \frac{\sin 2nx}{4n}\right|_{\alpha}^{\alpha+2\pi} = \pi, n \neq 0$$

$$\int_{\alpha}^{\alpha+2\pi} \sin mx \cos nx dx = \frac{1}{2} \int_{\alpha}^{\alpha+2\pi} (\sin(m+n)x + \sin(m-n)x) dx$$

$$= -\frac{1}{2} \left|\frac{\cos(m+n)}{(m+n)} + \frac{\cos(m-n)}{(m-n)}\right|_{\alpha}^{\alpha+2\pi} = 0, m \neq n$$
Important the product of t

The Euler-Fourier Formula(- π ,+ π) ***** Thus the coefficients are given by the equations $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, n = 0, 1, 2, ...,$ $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx, n = 1, 2, ...,$ which known as the **Euler-Fourier formulas**. ***** Note that these formulas depend only on the values of f(x) in the interval - $\pi \le x \le \pi$. Since each term of the Fourier series $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$ is periodic with period 2pi, the series converges for all x when it converges in - $\pi \le x \le \pi$, and f is determined for all x by its values in - $\pi \le x \le \pi$.

$$f(x) = \frac{1}{2}(\pi - x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$

* Find the F S. to represent x-x² from-pi to pi.

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}(\pi - x) dx$$

$$\frac{1}{2\pi} \left[\pi x - \frac{x^2}{2} \right]_{-\pi}^{\pi} = \pi$$

modified by Peeyush Tewari 17

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} (\pi - x) \cos nx \, dx$$

$$a_{n} = \frac{1}{2\pi} \left[(\pi - x) \frac{\sin nx}{n} - (-1) \left(\frac{-\cos nx}{n^{2}} \right) \right]_{-\pi}^{\pi}$$

$$= \frac{1}{2\pi} \left[0 \right] = 0$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} (\pi - x) \sin nx \, dx$$

$$= \frac{1}{2\pi} \left[(\pi - x) \frac{-\cos nx}{n} - (-1) \left(\frac{-\sin nx}{n^{2}} \right) \right]_{-\pi}^{\pi}$$

$$= \frac{(-1)^{n}}{n}$$
modified by Peevush Tewari 18

Using coeff. Just obtained
* We get

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$

$$f(x) = \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin nx$$
Multiply Peeus Tewari

Obtain the Fourier expansion of
$$f(x)=e^{-ax}$$
 in the interval $(-\pi, \pi)$.
EX
Ans
 $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} e^{-ax} dx = \frac{1}{\pi} \left[\frac{e^{-ax}}{-a} \right]_{-\pi}^{\pi}$
 $= \frac{e^{a\pi} - e^{-a\pi}}{a\pi} = \frac{2 \sinh a\pi}{a\pi}$
 $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^{-ax} \cos nx dx$
 $a_n = \frac{1}{\pi} \left[\frac{e^{-ax}}{a^2 + n^2} \left\{ -a \cos nx + n \sin nx \right\} \right]_{-\pi}^{\pi}$
 $= \frac{2a}{\pi} \left[\frac{(-1)^n \sinh a\pi}{a^2 + n^{2m} + n^{2m}} \right]_{-\pi}^{\pi}$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^{-ax} \sin nx dx$$

$$b_n = \frac{1}{\pi} \left[\frac{e^{-ax}}{a^2 + n^2} \left\{ -a \sin nx - n \cos nx \right\} \right]_{-\pi}^{\pi}$$

$$= \frac{2}{\pi} \left[\frac{(-1)^n \sinh a \pi}{a^2 + n^2} \right]$$
modified by Peeyush Tewari 21

Hence the F. S. Expansion

$$f(x) = \frac{\sinh a\pi}{a\pi} + \frac{2a \sinh a\pi}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{a^2 + n^2} \cos nx + \frac{2}{\pi} \sinh a\pi \sum_{n=1}^{\infty} \frac{n(-1)^n}{a^2 + n^2} \sin nx$$

$$(0) = 1 = \frac{\sinh \pi}{\pi} + \frac{2\sinh \pi}{\pi} \sum_{n=1}^{\infty} \frac{\pi}{n^2 + 1}$$

Example 1 function
**
$$f(x)=x^{2}, -\pi < x < \pi$$
, f is even so all $b_n=0$,
 $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 dx = \frac{2}{3} \pi^2$,
 $a_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx$,
 $a_n = \frac{2}{\pi} \left[x^2 \frac{\sin nx}{n} - \frac{2x}{n} \left(\frac{-\cos nx}{n} \right) + \frac{2}{n^2} \left(\frac{-\sin nx}{n} \right) \right]_{0}^{\pi}$
 $a_n = 0 + \frac{4}{n^2} (-1)^n$

Now coeff. in Fourier Expansion if (-L,L) * Suppose the series converges, and call its sum f(x): $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$ * The coefficients a_n , n = 1, 2, ..., can be found as follows. $\int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx = \frac{a_0}{2} \int_{-L}^{L} \cos \frac{n\pi x}{L} dx + \sum_{n=1}^{\infty} a_n \int_{-L}^{L} \cos \frac{n\pi x}{L} \cos \frac{n\pi x}{L} dx + \sum_{n=1}^{\infty} b_n \int_{-L}^{L} \sin \frac{n\pi x}{L} \cos \frac{n\pi x}{L} dx$ * By orthogonality, $\int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx = a_n \int_{-L}^{L} \cos^2 \frac{n\pi x}{L} dx = La_n$ modified by Peeyush Tewari

Example 3: Fourier Expansion (3 of 3)
Thus
$$b_n = 0$$
, $n = 1, 2, ...,$ and
 $a_0 = \frac{2}{3}$, $a_n = \frac{2}{n\pi} \sin \frac{n\pi}{3}$, $n = 1, 2, ...$
Then
 $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$
 $= \frac{1}{3} + \sum_{n=1}^{\infty} \frac{2}{n\pi} \sin \frac{n\pi}{3} \cos \frac{n\pi x}{3}$
 $= \frac{1}{3} - \frac{\sqrt{3}}{\pi} \left[\cos\left(\frac{\pi x}{3}\right) + \frac{1}{2} \cos\left(\frac{2\pi x}{3}\right) - \frac{1}{4} \cos\left(\frac{4\pi x}{3}\right) - \frac{1}{5} \cos\left(\frac{5\pi x}{3}\right) + ... \right]$

