Even and Odd Functions

* Before looking at further examples of Fourier series it is useful to distinguish two classes of functions for which the EulerFourier formulas for the coefficients can be simplified.
* The two classes are even and odd functions, which are characterized geometrically by the property of symmetry with respect to the y-axis and the origin, respectively.

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

(a)

(b)

Definition of Even and Odd Functions
㵿 Analytically, f is an even function if its domain contains the point $-x$ whenever it contains x, and if $f(-x)=f(x)$ for each x in the domain of f. See figure (a) below.

* The function f is an odd function if its domain contains the point $-x$ whenever it contains x, and if $f(-x)=-f(x)$ for each x in the domain of f. See figure (b) below.

䊏 Note that $f(0)=0$ for an odd function.

* Examples of even functions are $1, x^{2}, \cos x,|x|$.
* Examples of odd functions are $x, x^{3}, \sin x$.

(a)

Arithmetic Properties

* The following arithmetic properties hold:
- The sum (difference) of two even functions is even.
- The product (quotient) of two even functions is even.
- The sum (difference) of two odd functions is odd.
* The product (quotient) of two odd functions is even.
* These properties can be verified directly from the definitions, see text for details.

(a)

(b)
modified by peeyush tewari

Cosine Series

* Suppose that f and f ' are piecewise continuous on $[-L, L)$ and that f is an even periodic function with period $2 L$.
* Then $f(x) \cos (n \pi x / L)$ is even and $f(x) \sin (n \pi x / L)$ is odd. Thus

$$
\begin{aligned}
& a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad n=0,1,2, \ldots \\
& b_{n}=0, n=1,2, \ldots
\end{aligned}
$$

娄 Hence the Fourier series of f is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
$$

* Thus the Fourier series of an even function consists only of the cosine terms (and constant term), and is called a Fourier cosine series.

Sine Series

* Suppose that f and f ' are piecewise continuous on $[-L, L)$ and that f is an odd periodic function with period $2 L$.
* Then $f(x) \cos (n \pi x / L)$ is odd and $f(x) \sin (n \pi x / L)$ is even. Thus

$$
\begin{aligned}
& a_{n}=0, \quad n=0,1,2, \ldots \\
& b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x, \quad n=1,2, \ldots
\end{aligned}
$$

* It follows that the Fourier series of f is

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

* Thus the Fourier series of an odd function consists only of the sine terms, and is called a Fourier sine series.

Expand $\mathrm{f}(\mathrm{x})=\mathrm{x}(\pi-\mathrm{x})$ as half-range sine series over the interval $(0, \pi)$.

$$
\begin{aligned}
& \text { Weget } b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi}\left(\pi x-x^{2}\right) \sin n x d x \\
& b_{n}=\frac{2}{\pi}\left[\left(\pi x-x^{2}\right)\left(\frac{-\cos n x}{n}\right)-(\pi-2 x)\left(\frac{-\sin n x}{n^{2}}\right)+(-2)\left(\frac{\cos n x}{n^{3}}\right)\right]_{0}^{\pi} \\
& =\frac{4}{n^{3} \pi}\left[1-(-1)^{n}\right] \\
& f(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{3}}\left[1-(-1)^{n}\right] \sin n x
\end{aligned}
$$

Example 1: Saw-tooth Wave (1 of 3)

* Consider the function below.

$$
f(x)=\left\{\begin{array}{cc}
x, & -L<x<L \\
0, & x= \pm L
\end{array}, \quad f(x+2 L)=f(x)\right.
$$

聯 This function represents a saw-tooth wave, and is periodic with period $T=2 L$. See graph of f below.
糈 Find the Fourier series representation for this function.

Example 1: Coefficients (2 of 3)

* Since f is an odd periodic function with period $2 L$, we have

$$
\begin{aligned}
a_{n} & =0, \quad n=0,1,2, \ldots \\
b_{n} & =\frac{2}{L} \int_{0}^{L} x \sin \frac{n \pi x}{L} d x=\left.\frac{2}{L}\left(\frac{L}{n \pi}\right)^{2}\left(\sin \frac{n \pi x}{L}-\frac{n \pi x}{L} \cos \frac{n \pi x}{L}\right)\right|_{0} ^{L} \\
& =\frac{2 L}{n \pi}(-1)^{n+1}, \quad n=1,2, \ldots
\end{aligned}
$$

** It follows that the Fourier series of f is

$$
f(x)=\frac{2 L}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi x}{L}
$$

Example 1: Graph of Partial Sum (3 of 3)

* The graphs of the partial sum $s_{9}(x)$ and f are given below.

桊 Observe that f is discontinuous at $x= \pm(2 n+1) L$, and at these points the series converges to the average of the left and right limits (as given by Theorem 10.3.1), which is zero.

* The Gibbs phenomenon again occurs near the discontinuities.

Even Extensions

* It is often useful to expand in a Fourier series of period $2 L$ a function f originally defined only on $[0, L]$, as follows.
* Define a function g of period $2 L$ so that

$$
g(x)=\left\{\begin{array}{cc}
f(x), \quad 0 \leq x \leq L \\
f(-x), & -L<x<0
\end{array}, \quad g(x+2 L)=g(x)\right.
$$

* The function g is the even periodic extension of f. Its Fourier series, which is a cosine series, represents f on $[0, L]$.
*. For example, the even periodic extension of $f(x)=x$ on $[0,2]$ is the triangular wave $g(x)$ given below.

$$
g(x)=\left\{\begin{array}{rr}
-x, & -2 \leq x<0 \\
x, & 0 \leq x<2
\end{array}\right.
$$

Odd Extensions

* As before, let f be a function defined only on $(0, L)$.
* Define a function h of period $2 L$ so that

$$
h(x)=\left\{\begin{array}{cc}
f(x), & 0<x<L \\
0, & x=0, L \\
-f(-x) & -L<x<0
\end{array}, \quad h(x+2 L)=h(x)\right.
$$

* The function h is the odd periodic extension of f. Its Fourier series, which is a sine series, represents f on $(0, L)$.
娄 For example, the odd periodic extension of $f(x)=x$ on $[0, L)$ is the sawtooth wave $h(x)$ given below.

$$
h(x)=\left\{\begin{array}{lc}
x, & -L<x<L \\
0, & x= \pm L
\end{array}\right.
$$

General Extensions

* As before, let f be a function defined only on $[0, L]$.
* Define a function k of period $2 L$ so that

$$
k(x)=\left\{\begin{array}{l}
f(x), \quad 0 \leq x \leq L \\
m(x),
\end{array} \quad-L<x<0, \quad k(x+2 L)=k(x)\right.
$$

where $m(x)$ is a function defined in any way consistent with Theorem 10.3.1. For example, we may define $m(x)=0$.
桊 The Fourier series for k involves both sine and cosine terms, and represents f on $[0, L]$, regardless of how $m(x)$ is defined.

* Thus there are infinitely many such series, all of which converge to f on $[0, L]$.

Example 2

* Consider the function below.

$$
f(x)=\left\{\begin{array}{cc}
1-x, & 0<x \leq 1 \\
0, & 1<x \leq 2
\end{array}\right.
$$

* As indicated previously, we can represent f either by a cosine series or a sine series on $[0,2]$. Here, $L=2$.

类 The cosine series for f converges to the even periodic extension of f of period 4 , and this graph is given below left.
水 The sine series for f converges to the odd periodic extension of f of period 4, and this graph is given below right.

