

Cosine Series Suppose that *f* and *f* ' are piecewise continuous on [-*L*, *L*) and that *f* is an even periodic function with period 2*L*. Then *f*(*x*) cos(*n*π*x*/*L*) is even and *f*(*x*) sin(*n*π*x*/*L*) is odd. Thus a_n = ²/_L ∫₀^L *f*(*x*) cos ^{*n*π *x*}/_L d*x*, *n* = 0,1,2,...

$$b_n = 0, n = 1, 2, \dots$$

Hence the Fourier series of f is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L}$$

* Thus the Fourier series of an even function consists only of the cosine terms (and constant term), and is called a Fourier cosine series.

modified by peeyush tewari

Expand
$$f(x) = x(\pi - x)$$
 as half-range sine
series over the interval $(0,\pi)$.
Weget $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nxdx$
 $= \frac{2}{\pi} \int_0^{\pi} (\pi x - x^2) \sin nxdx$
 $b_n = \frac{2}{\pi} \Big[(\pi x - x^2) \Big(\frac{-\cos nx}{n} \Big) - (\pi - 2x) \Big(\frac{-\sin nx}{n^2} \Big) + (-2) \Big(\frac{\cos nx}{n^3} \Big) \Big]_0^{\pi}$
 $= \frac{4}{n^3 \pi} [1 - (-1)^n]$
 $f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^3} [1 - (-1)^n] \sin nx$
modified by peeyush tewari

Obtain the cosine series
over (0,pi)
$$f(x) = \begin{cases} x, 0 < x < \frac{\pi}{2} \\ \pi - x, \frac{\pi}{2} < x < \pi \end{cases}$$

$$a_{0} = \frac{2}{\pi} \left[\int_{0}^{\frac{\pi}{2}} x dx + \int_{\frac{\pi}{2}}^{\pi} (\pi - x) dx \right] = \frac{\pi}{2}$$

$$a_{n} = \frac{2}{\pi} \left[\int_{0}^{\frac{\pi}{2}} x \cos nx dx + \int_{\frac{\pi}{2}}^{\pi} (\pi - x) \cos nx dx \right]$$

$$a_{n} = -\frac{2}{\pi^{2}\pi} \left[1 + (-1)^{n} - 2\cos\left(\frac{n\pi}{2}\right) \right]$$

$$= -\frac{8}{n^{2}\pi}, n = 2, 6, 10,$$

$$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left[\frac{\cos 2x}{1^{2}} + \frac{\cos 6x}{3^{2}} + \frac{\cos 10x}{5^{2}} +\infty \right]$$
redified by peeyush tewari

